login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257081
a(n) = Number of iterations of A257080 needed, starting from n, before a fixed point is reached.
3
0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 2, 2, 0, 4, 2, 2, 0, 3, 0, 2, 3, 2, 0, 3, 1, 3, 1, 3, 1, 2, 1, 4, 1, 1, 7, 3, 1, 6, 1, 3, 2, 5, 1, 4, 1, 1, 2, 3, 0, 4, 2, 2, 0, 4, 2, 2, 9, 10, 4, 8, 0, 6, 3, 3, 0, 6, 0, 3, 6, 3, 0, 6, 0, 2, 2, 2, 0, 3, 2, 2, 2, 2, 1, 3, 0, 1, 3, 1, 0, 2, 0, 2, 2, 3, 0, 4, 0, 3, 8, 4, 0, 5, 6, 5, 3, 2, 6, 4, 0, 3, 1, 5, 0, 5, 0, 2, 2, 2, 0, 6, 1
OFFSET
0,2
COMMENTS
Note: when at some point of iteration we reach some k whose factorial representation (A007623) does not contain any 1's, then at next step A257080(k) = 1*k, and thus a fixed point has been reached.
FORMULA
If A257079(n) = 1, a(n) = 0, otherwise, a(n) = 1 + a(A257080(n)).
EXAMPLE
For n = 5, with factorial representation A007623(5) = "21", the least missing nonzero digit is 3, thus A257080(5) = 3*5 = 15. 15 has factorial representation "211", so again we multiply by 3, resulting 3*15 = 45, with factorial representation "1311", thus the least missing nonzero digit is now 2, and 2*45 = 90, "3300" in factorial base, for which the least missing digit is 1, resulting 1*90 = 90 forever after, thus we have reached a fixed point after three iteration steps (5 -> 15 -> 45 -> 90) and a(5) = 3.
PROG
(Scheme)
(define (A257081 n) (let loop ((oldn n) (n (A257080 n)) (s 1)) (if (= oldn n) s (loop n (A257080 n) (+ 1 s)))))
;; Alternative, recursive version, optionally using the memoizing definec-macro:
(definec (A257081 n) (if (= 1 (A257079 n)) 0 (+ 1 (A257081 (A257080 n)))))
CROSSREFS
A255411 gives the positions of zeros.
Sequence in context: A339471 A159834 A274576 * A271484 A199920 A177995
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2015
STATUS
approved