login
A257081
a(n) = Number of iterations of A257080 needed, starting from n, before a fixed point is reached.
3
0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 2, 2, 0, 4, 2, 2, 0, 3, 0, 2, 3, 2, 0, 3, 1, 3, 1, 3, 1, 2, 1, 4, 1, 1, 7, 3, 1, 6, 1, 3, 2, 5, 1, 4, 1, 1, 2, 3, 0, 4, 2, 2, 0, 4, 2, 2, 9, 10, 4, 8, 0, 6, 3, 3, 0, 6, 0, 3, 6, 3, 0, 6, 0, 2, 2, 2, 0, 3, 2, 2, 2, 2, 1, 3, 0, 1, 3, 1, 0, 2, 0, 2, 2, 3, 0, 4, 0, 3, 8, 4, 0, 5, 6, 5, 3, 2, 6, 4, 0, 3, 1, 5, 0, 5, 0, 2, 2, 2, 0, 6, 1
OFFSET
0,2
COMMENTS
Note: when at some point of iteration we reach some k whose factorial representation (A007623) does not contain any 1's, then at next step A257080(k) = 1*k, and thus a fixed point has been reached.
FORMULA
If A257079(n) = 1, a(n) = 0, otherwise, a(n) = 1 + a(A257080(n)).
EXAMPLE
For n = 5, with factorial representation A007623(5) = "21", the least missing nonzero digit is 3, thus A257080(5) = 3*5 = 15. 15 has factorial representation "211", so again we multiply by 3, resulting 3*15 = 45, with factorial representation "1311", thus the least missing nonzero digit is now 2, and 2*45 = 90, "3300" in factorial base, for which the least missing digit is 1, resulting 1*90 = 90 forever after, thus we have reached a fixed point after three iteration steps (5 -> 15 -> 45 -> 90) and a(5) = 3.
PROG
(Scheme)
(define (A257081 n) (let loop ((oldn n) (n (A257080 n)) (s 1)) (if (= oldn n) s (loop n (A257080 n) (+ 1 s)))))
;; Alternative, recursive version, optionally using the memoizing definec-macro:
(definec (A257081 n) (if (= 1 (A257079 n)) 0 (+ 1 (A257081 (A257080 n)))))
CROSSREFS
A255411 gives the positions of zeros.
Sequence in context: A339471 A159834 A274576 * A271484 A199920 A177995
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2015
STATUS
approved