login
A257079
The least nonzero digit missing from the factorial representation (A007623) of n.
9
1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 1, 3, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1, 4, 4, 4, 1, 4, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 4, 1, 4, 4, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 1, 3, 1, 2, 2, 2, 1, 5, 2
OFFSET
0,2
FORMULA
Other identities:
For all n >= 1, a(A033312(n)) = n. [n! - 1 gives the first position where n appears. Note also how the digits in factorial base representation may get arbitrarily large values.]
EXAMPLE
The least digit > 0 missing from the factorial representation (A007623) of zero, "0", is 1, thus a(0) = 1.
The least digit > 0 missing from the factorial representation of one, "1", is 2, thus a(1) = 2.
The least digit > 0 missing from the factorial representation of 21, "311", is 2, thus a(21) = 2.
MATHEMATICA
a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Min[Complement[Range[Max[s]+1], s]]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
PROG
(Scheme)
(define (A257079 n) (let loop ((digs (uniq (sort (n->factbase n) <))) (mnp 1)) (cond ((null? digs) mnp) ((zero? (car digs)) (loop (cdr digs) mnp)) ((= (car digs) mnp) (loop (cdr digs) (+ 1 mnp))) (else mnp))))
;; Convert an integer to a factorial expansion list:
(define (n->factbase n) (let loop ((n n) (fex (if (zero? n) (list 0) (list))) (i 2)) (cond ((zero? n) fex) (else (loop (floor->exact (/ n i)) (cons (modulo n i) fex) (1+ i))))))
(define (uniq lista) (let loop ((lista lista) (z (list))) (cond ((null? lista) (reverse! z)) ((and (pair? z) (equal? (car z) (car lista))) (loop (cdr lista) z)) (else (loop (cdr lista) (cons (car lista) z))))))
CROSSREFS
Cf. A033312 (the positions of records from a(1) onward.)
Cf. A255411 (the positions of ones.)
Sequence in context: A295277 A194290 A329028 * A327567 A260372 A037180
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Apr 15 2015
STATUS
approved