OFFSET
0,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..10080
Eric Angelini, et al., "Multiply by the fantom digit", Discussion on Seqfan-list.
FORMULA
Other identities:
For all n >= 1, a(A033312(n)) = n. [n! - 1 gives the first position where n appears. Note also how the digits in factorial base representation may get arbitrarily large values.]
EXAMPLE
The least digit > 0 missing from the factorial representation (A007623) of zero, "0", is 1, thus a(0) = 1.
The least digit > 0 missing from the factorial representation of one, "1", is 2, thus a(1) = 2.
The least digit > 0 missing from the factorial representation of 21, "311", is 2, thus a(21) = 2.
MATHEMATICA
a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Min[Complement[Range[Max[s]+1], s]]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
PROG
(Scheme)
(define (A257079 n) (let loop ((digs (uniq (sort (n->factbase n) <))) (mnp 1)) (cond ((null? digs) mnp) ((zero? (car digs)) (loop (cdr digs) mnp)) ((= (car digs) mnp) (loop (cdr digs) (+ 1 mnp))) (else mnp))))
;; Convert an integer to a factorial expansion list:
(define (n->factbase n) (let loop ((n n) (fex (if (zero? n) (list 0) (list))) (i 2)) (cond ((zero? n) fex) (else (loop (floor->exact (/ n i)) (cons (modulo n i) fex) (1+ i))))))
(define (uniq lista) (let loop ((lista lista) (z (list))) (cond ((null? lista) (reverse! z)) ((and (pair? z) (equal? (car z) (car lista))) (loop (cdr lista) z)) (else (loop (cdr lista) (cons (car lista) z))))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Apr 15 2015
STATUS
approved