Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Mar 13 2024 10:43:49
%S 0,1,2,1,3,3,4,1,2,4,5,3,6,5,5,1,7,3,8,4,6,6,9,3,3,7,2,5,10,6,11,1,7,
%T 8,7,3,12,9,8,4,13,7,14,6,5,10,15,3,4,4,9,7,16,3,8,5,10,11,17,6,18,12,
%U 6,1,9,8,19,8,11,8,20,3,21,13,5,9,9,9,22,4,2,14,23,7,10,15,12,6,24,6,10
%N a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.
%C Equals row sums of triangle A143542. - _Gary W. Adamson_, Aug 23 2008
%C a(n) = the sum of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 5; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2 + 3 = 5. - _Emeric Deutsch_, Jun 04 2015
%H Antti Karttunen, <a href="/A066328/b066328.txt">Table of n, a(n) for n = 1..65537</a> (terms 1..1000 from Harry J. Smith)
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - _Vladeta Jovovic_, Aug 11 2004
%F Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
%F a(n) = A056239(A007947(n)). - _Antti Karttunen_, Sep 06 2018
%F a(n) = Sum_{p|n} A000720(p), where p is a prime. - _Ridouane Oudra_, Aug 19 2019
%e a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime.
%e From _Gus Wiseman_, Mar 09 2019: (Start)
%e The distinct prime indices of 1..20 and their sums.
%e 1: () = 0
%e 2: (1) = 1
%e 3: (2) = 2
%e 4: (1) = 1
%e 5: (3) = 3
%e 6: (1+2) = 3
%e 7: (4) = 4
%e 8: (1) = 1
%e 9: (2) = 2
%e 10: (1+3) = 4
%e 11: (5) = 5
%e 12: (1+2) = 3
%e 13: (6) = 6
%e 14: (1+4) = 5
%e 15: (2+3) = 5
%e 16: (1) = 1
%e 17: (7) = 7
%e 18: (1+2) = 3
%e 19: (8) = 8
%e 20: (1+3) = 4
%e (End)
%p with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # _Ridouane Oudra_, Aug 19 2019
%t PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* _Robert G. Wilson v_, May 04 2004 *)
%o (PARI) { for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ _Harry J. Smith_, Feb 10 2010
%o (PARI) a(n)=my(f=factor(n)[,1]); sum(i=1,#f,primepi(f[i])) \\ _Charles R Greathouse IV_, May 11 2015
%o (PARI) A066328(n) = vecsum(apply(primepi,(factor(n)[,1]))); \\ _Antti Karttunen_, Sep 06 2018
%o (Python)
%o from sympy import primepi, primefactors
%o def A066328(n): return sum(map(primepi,primefactors(n))) # _Chai Wah Wu_, Mar 13 2024
%Y Cf. A143542. - _Gary W. Adamson_, Aug 23 2008
%Y Cf. A000720, A056239, A136565.
%Y Cf. A001221, A046660, A112798, A114638, A116861, A304360.
%K nonn
%O 1,3
%A _Leroy Quet_, Jan 01 2002