login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136565 a(n) = sum of the distinct values making up the exponents in the prime-factorization of n. 8
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n) = A088529(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from Diana Mecum)
FORMULA
a(n) = A066328(A181819(n)). - Antti Karttunen, Sep 06 2018
EXAMPLE
120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
MATHEMATICA
Join[{0}, Table[Total[Union[Transpose[FactorInteger[n]][[2]]]], {n, 2, 110}]] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(PARI) A136565(n) = vecsum(apply(primepi, factor(factorback(apply(e->prime(e), (factor(n)[, 2]))))[, 1])); \\ Antti Karttunen, Sep 06 2018
CROSSREFS
Sequence in context: A292777 A088529 A267116 * A181591 A347442 A336424
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 07 2008
EXTENSIONS
More terms from Diana L. Mecum, Jul 17 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 07:57 EDT 2024. Contains 375850 sequences. (Running on oeis4.)