|
|
A136565
|
|
a(n) = sum of the distinct values making up the exponents in the prime-factorization of n.
|
|
8
|
|
|
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
|
|
MATHEMATICA
|
Join[{0}, Table[Total[Union[Transpose[FactorInteger[n]][[2]]]], {n, 2, 110}]] (* Harvey P. Dale, Jun 23 2013 *)
|
|
PROG
|
(PARI) A136565(n) = vecsum(apply(primepi, factor(factorback(apply(e->prime(e), (factor(n)[, 2]))))[, 1])); \\ Antti Karttunen, Sep 06 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|