login
A136565
a(n) = sum of the distinct values making up the exponents in the prime-factorization of n.
8
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1
OFFSET
1,4
COMMENTS
a(n) = A088529(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
FORMULA
a(n) = A066328(A181819(n)). - Antti Karttunen, Sep 06 2018
EXAMPLE
120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
MATHEMATICA
Join[{0}, Table[Total[Union[Transpose[FactorInteger[n]][[2]]]], {n, 2, 110}]] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(PARI) A136565(n) = vecsum(apply(primepi, factor(factorback(apply(e->prime(e), (factor(n)[, 2]))))[, 1])); \\ Antti Karttunen, Sep 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 07 2008
EXTENSIONS
More terms from Diana L. Mecum, Jul 17 2008
STATUS
approved