login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088529
Numerator of Bigomega(n)/Omega(n).
30
1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 1, 3, 1, 3, 3, 2
OFFSET
2,3
REFERENCES
H. Z. Cao, On the average of exponents, Northeast. Math. J., Vol. 10 (1994), pp. 291-296.
LINKS
R. L. Duncan, On the factorization of integrers, Proc. Amer. Math. Soc. 25 (1970), 191-192.
Steven Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022.
FORMULA
Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = numerator of B/O.
a(n) = A136565(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
Sum_{k=2..n} a(k)/A088530(k) ~ n + O(n/log(log(n))) (Duncan, 1970). - Amiram Eldar, Oct 14 2022
Sum_{k=2..n} a(k)/A088530(k) = n + c_1 * n/log(log(n)) + c_2 * n/log(log(n))^2 + O(n/log(log(n))^3), where c_1 = A136141 and c_2 = A272531 (Cao, 1994; Finch, 2020). - Amiram Eldar, Dec 15 2022
EXAMPLE
bigomega(24) / omega(24) = 4/2 = 2, so a(24) = 2.
MATHEMATICA
Table[Numerator[PrimeOmega[n]/PrimeNu[n]], {n, 2, 100}] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(PARI) for(x=2, 100, y=bigomega(x)/omega(x); print1(numerator(y)", "))
(Python)
from sympy import primefactors, Integer
def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1
def omega(n): return Integer(len(primefactors(n)))
def a(n): return (bigomega(n)/omega(n)).numerator()
print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017
CROSSREFS
Cf. A001221, A001222, A070012, A070013, A070014, A088530 (gives the denominator).
Sequence in context: A293515 A326622 A292777 * A267116 A136565 A181591
KEYWORD
nonn,frac
AUTHOR
Cino Hilliard, Nov 16 2003
STATUS
approved