OFFSET
1,4
LINKS
FORMULA
Other identities and observations. For all n >= 1:
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k).
a(A003961(n)) = a(n).
a(n^2) = 2*a(n).
(End)
EXAMPLE
For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2.
For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1.
For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7.
MAPLE
read("transforms"):
A267116 := proc(n)
local a, e ;
a := 0 ;
for e in ifactors(n)[2] do
a := ORnos(a, op(2, e)) ;
end do:
a ;
end proc: # R. J. Mathar, Feb 16 2021
MATHEMATICA
{0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* Michael De Vlieger, Feb 04 2016 *)
PROG
(Scheme, two variants, first one with memoization-macro definec)
(definec (A267116 n) (cond ((= 1 n) 0) (else (A003986bi (A067029 n) (A267116 (A028234 n)))))) ;; A003986bi implements bitwise-or (see A003986).
(PARI) a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k, 2]); ); b; \\ Michel Marcus, Feb 05 2016
(PARI) a(n)=if(n>1, fold(bitor, factor(n)[, 2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
(Python)
from functools import reduce
from operator import or_
from sympy import factorint
def A267116(n): return reduce(or_, factorint(n).values(), 0) # Chai Wah Wu, Aug 31 2022
CROSSREFS
Cf. A000290 (indices of even numbers).
Cf. A000037 (indices of odd numbers).
Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2016
STATUS
approved