login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267115
Bitwise-AND of the exponents of primes in the prime factorization of n, a(1) = 0.
11
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 0, 1, 1, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 6, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 4, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1
OFFSET
1,4
COMMENTS
The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 105, 826, 7440, 71558, 707625, 7053959, 70473172, 704531711, 7044701307, 70445097231, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 0.7044... . - Amiram Eldar, Sep 09 2022
FORMULA
If A028234(n) = 1 [when n is a power of prime, in A000961], a(n) = A067029(n), otherwise a(n) = A067029(n) AND a(A028234(n)). [Here AND stands for bitwise-and, A004198.]
EXAMPLE
For n = 24 = 2^3 * 3^1, bitwise-and of 3 and 1 ("11" and "01" in binary) gives 1, thus a(24) = 1.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-and of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-and of 4, 2 and 1 ("100", "10" and "1" in binary) gives zero, thus a(720) = 0.
MATHEMATICA
{0}~Join~Table[BitAnd @@ Map[Last, FactorInteger@ n], {n, 2, 120}] (* Michael De Vlieger, Feb 07 2016 *)
PROG
(Scheme, two variants)
(define (A267115 n) (let loop ((n (A028234 n)) (z (A067029 n))) (cond ((= 1 n) z) (else (loop (A028234 n) (A004198bi z (A067029 n))))))) ;; A004198bi implements bitwise-and (see A004198).
;; A recursive version using memoizing definec-macro:
(definec (A267115 n) (if (= 1 (A028234 n)) (A067029 n) (A004198bi (A067029 n) (A267115 (A028234 n)))))
(PARI) a(n)=my(f = factor(n)[, 2]); if (#f == 0, return (0)); my(b = f[1]); for (k=2, #f, b = bitand(b, f[k]); ); b; \\ Michel Marcus, Feb 07 2016
(PARI) a(n)=if(n>1, fold(bitand, factor(n)[, 2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
(Python)
from functools import reduce
from operator import and_
from sympy import factorint
def A267115(n): return reduce(and_, factorint(n).values()) if n > 1 else 0 # Chai Wah Wu, Aug 31 2022
CROSSREFS
Cf. A002035 (indices of odd numbers), A072587 (indices of even numbers that occur after a(1)).
Cf. A267117 (indices of zeros).
Sequence in context: A074761 A037861 A145037 * A328919 A277647 A296134
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2016
STATUS
approved