login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296134
Number of twice-factorizations of n of type (R,Q,R).
5
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).
FORMULA
From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)
EXAMPLE
The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
MATHEMATICA
Table[DivisorSum[GCD@@FactorInteger[n][[All, 2]], PartitionsQ], {n, 100}]
PROG
(PARI)
A000009(n, k=(n-!(n%2))) = if(!n, 1, my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k, k)); k -= 2); (s));
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
A296134(n) = if(1==n, n, sumdiv(A052409(n), d, A000009(d))); \\ Antti Karttunen, Jul 29 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2017
EXTENSIONS
More terms from Antti Karttunen, Jul 29 2018
STATUS
approved