login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136566
a(n) = sum of the exponents occurring only once each in the prime-factorization of n.
4
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 4, 2, 0, 3, 3, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 4, 1, 0, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 4, 0, 4, 0, 0, 1, 2, 1, 0, 3, 6, 0, 0, 1, 3, 0, 0, 1, 5, 1, 0, 3, 3, 0, 0, 1, 5, 4, 0, 1, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0, 6, 1, 3, 3, 0, 1, 0, 1, 4, 0
OFFSET
1,4
LINKS
Diana Mecum and Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from Diana Mecum)
EXAMPLE
4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2+3 = 5.
MATHEMATICA
Table[Total@ Flatten@ Select[Split[Sort[FactorInteger[n][[All, -1]]]], Length@ # == 1 &] - Boole[n == 1], {n, 105}] (* Michael De Vlieger, Sep 21 2017 *)
PROG
(PARI) a(n) = my(f=factor(n)[, 2]); sum(k=1, #f, f[k]*(#select(x->(x==f[k]), f) == 1)); \\ Michel Marcus, Sep 22 2017
CROSSREFS
Sequence in context: A329615 A272894 A268387 * A330235 A048983 A301505
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 07 2008
EXTENSIONS
More terms from Diana L. Mecum, Jul 17 2008
STATUS
approved