login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327785
Square array read by antidiagonals: A(n,k) = Sum_{d|n} (k/d), (n>=1, k>=0), where (m/n) is the Kronecker symbol.
1
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 0, 4, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 4, 1, 1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 1, 2, 0, 3, 2, 0, 2, 0, 1, 4, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 0, 4, 0, 0, 3, 0, 0, 6, 1
OFFSET
1,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 0, 1, 0, 1, 2, ...
1, 2, 0, 1, 2, 0, 1, 2, ...
1, 3, 1, 1, 1, 1, 1, 3, ...
1, 2, 0, 0, 2, 1, 2, 0, ...
1, 4, 0, 0, 2, 0, 1, 4, ...
1, 2, 2, 0, 2, 0, 0, 1, ...
1, 4, 1, 0, 1, 0, 1, 4, ...
MATHEMATICA
A[n_, k_] := Sum[KroneckerSymbol[k, d], {d, Divisors[n]}];
Table[A[n - k, k], {n, 1, 13}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 25 2019
STATUS
approved