The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035202 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20. 2
 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS Also number of divisors of n which end in 1 or 9 minus number of divisors of n which end in 3 or 7. E.g. a(98)=2-1=1 since divisors of 98 are: 1 and 49 counting +1 each; 2, 14 and 98 counting 0 each; and 7 counting -1. - Henry Bottomley, Jul 08 2003 LINKS MathNerds, An Excess of Divisors. MAPLE a:= proc(n) local D, d; D:= map(`modp`, convert(numtheory:-divisors(n), list), 10);       numboccur(1, D) + numboccur(9, D) - numboccur(3, D) - numboccur(7, D); end proc: seq(a(n), n=1..1000); # Robert Israel, Sep 22 2014 PROG (PARI) m=20; direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X)) CROSSREFS Cf. A083911, A083913, A083917, A083919. Sequence in context: A188171 A330733 A328496 * A227835 A281154 A245536 Adjacent sequences:  A035199 A035200 A035201 * A035203 A035204 A035205 KEYWORD nonn AUTHOR EXTENSIONS More terms from Henry Bottomley, Jul 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 12:35 EDT 2021. Contains 347527 sequences. (Running on oeis4.)