login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035202
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.
3
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0
OFFSET
1,11
COMMENTS
Also number of divisors of n which end in 1 or 9 minus number of divisors of n which end in 3 or 7. E.g. a(98)=2-1=1 since divisors of 98 are: 1 and 49 counting +1 each; 2, 14 and 98 counting 0 each; and 7 counting -1. - Henry Bottomley, Jul 08 2003
LINKS
MathNerds, An Excess of Divisors. [Wayback Machine link]
FORMULA
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(20, d).
Multiplicative with a(p^e) = 1 if Kronecker(20, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(20, p) = -1 (p is in A003631 \ {2}), and a(p^e) = e+1 if Kronecker(20, p) = 1 (p is in A045468).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(phi)/sqrt(5) = 0.645613411446..., where phi is the golden ratio (A001622). (End)
MAPLE
a:= proc(n) local D, d; D:= map(`modp`, convert(numtheory:-divisors(n), list), 10);
numboccur(1, D) + numboccur(9, D) - numboccur(3, D) - numboccur(7, D);
end proc:
seq(a(n), n=1..1000); # Robert Israel, Sep 22 2014
MATHEMATICA
a[n_] := With[{d = Mod[Divisors[n], 10]}, Count[d, 1|9] - Count[d, 3|7]];
Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 15 2023 *)
a[n_] := DivisorSum[n, KroneckerSymbol[20, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
PROG
(PARI) my(m = 20); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(20, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
KEYWORD
nonn,easy,mult
EXTENSIONS
More terms from Henry Bottomley, Jul 08 2003
STATUS
approved