login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245536
Write n>=1 as either n=2^k-2^r with 0 <= r <= k-1, in which case a(2^k-2^r)=k-r-1, or as n=2^k-2^r+j with 2 <= r <= k-1, 1 <= j < 2^r-1, in which case a(2^k-2^r+j)=(k-r-1)*a(j).
1
0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 2, 3, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2
OFFSET
1,7
COMMENTS
Defined by the recurrence given in A245196, taking G(n)=n (n>=0) and m=1.
Changing G from [0,1,2,3,4,...] to [1,2,3,4,5,6,...] produces A038374.
MAPLE
G:=[seq(n, n=0..30)];
m:=1;
f:=proc(n) option remember; global m, G; local k, r, j, np;
k:=1+floor(log[2](n)); np:=2^k-n;
if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi;
end;
[seq(f(n), n=1..120)];
CROSSREFS
Sequence in context: A035202 A227835 A281154 * A291203 A256852 A128616
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 25 2014
STATUS
approved