This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245536 Write n>=1 as either n=2^k-2^r with 0 <= r <= k-1, in which case a(2^k-2^r)=k-r-1, or as n=2^k-2^r+j with 2 <= r <= k-1, 1 <= j < 2^r-1, in which case  a(2^k-2^r+j)=(k-r-1)*a(j). 1
 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 2, 3, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Defined by the recurrence given in A245196, taking G(n)=n (n>=0) and m=1. Changing G from [0,1,2,3,4,...] to [1,2,3,4,5,6,...] produces A038374. LINKS MAPLE G:=[seq(n, n=0..30)]; m:=1; f:=proc(n) option remember; global m, G; local k, r, j, np;    k:=1+floor(log[2](n)); np:=2^k-n;    if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;    if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi; end; [seq(f(n), n=1..120)]; CROSSREFS Cf. A245196, A038374. Sequence in context: A035202 A227835 A281154 * A291203 A256852 A128616 Adjacent sequences:  A245533 A245534 A245535 * A245537 A245538 A245539 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:47 EDT 2019. Contains 325109 sequences. (Running on oeis4.)