login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245535
Decimal expansion of the analog of the Gibbs-Wilbraham constant for L_1 trigonometric polynomial approximation.
1
0, 6, 5, 7, 8, 3, 8, 8, 8, 2, 6, 6, 4, 4, 8, 0, 9, 9, 0, 5, 6, 5, 5, 1, 2, 1, 8, 0, 8, 7, 4, 7, 0, 4, 6, 6, 9, 4, 9, 9, 5, 6, 4, 8, 0, 3, 2, 1, 6, 0, 5, 1, 2, 7, 3, 0, 7, 1, 3, 2, 0, 4, 7, 5, 3, 5, 4, 7, 9, 5, 3, 9, 7, 2, 9, 6, 1, 7, 7, 0, 4, 0, 8, 5, 8, 7, 1, 0, 5, 8, 8, 9, 9, 7, 8, 4, 5, 3, 3, 7, 9, 5
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249.
LINKS
FORMULA
Maximum g(x0) of the function g(x) = (psi(x/2) - psi((x+1)/2) + 1/x)*sin(Pi*x)/Pi, for x >= 1, where psi is the polygamma function.
EXAMPLE
x0 = 1.376991769203938865765266614301624670814900061506257246...
g(x0) = 0.0657838882664480990565512180874704669499564803216...
MATHEMATICA
digits = 101; g[x_] := (PolyGamma[x/2] - PolyGamma[(x+1)/2] + 1/x)*Sin[Pi*x]/Pi; x0 = x /. FindRoot[g'[x] == 0, {x, 3/2}, WorkingPrecision -> digits+5]; RealDigits[g[x0], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved