login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.
3

%I #25 Nov 19 2023 01:27:26

%S 1,1,0,1,1,0,0,1,1,1,2,0,0,0,0,1,0,1,2,1,0,2,0,0,1,0,0,0,2,0,2,1,0,0,

%T 0,1,0,2,0,1,2,0,0,2,1,0,0,0,1,1,0,0,0,0,2,0,0,2,2,0,2,2,0,1,0,0,0,0,

%U 0,0,2,1,0,0,0,2,0,0,2,1,1,2,0,0,0,0,0,2,2,1,0,0,0,0,2,0,0,1,2,1,2,0,0,0,0

%N Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.

%C Also number of divisors of n which end in 1 or 9 minus number of divisors of n which end in 3 or 7. E.g. a(98)=2-1=1 since divisors of 98 are: 1 and 49 counting +1 each; 2, 14 and 98 counting 0 each; and 7 counting -1. - _Henry Bottomley_, Jul 08 2003

%H Amiram Eldar, <a href="/A035202/b035202.txt">Table of n, a(n) for n = 1..10000</a>

%H MathNerds, <a href="https://web.archive.org/web/20130123081526/http://www.mathnerds.com/best/DivisorExcess/index.aspx">An Excess of Divisors</a>. [Wayback Machine link]

%F From _Amiram Eldar_, Nov 19 2023: (Start)

%F a(n) = Sum_{d|n} Kronecker(20, d).

%F Multiplicative with a(p^e) = 1 if Kronecker(20, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(20, p) = -1 (p is in A003631 \ {2}), and a(p^e) = e+1 if Kronecker(20, p) = 1 (p is in A045468).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(phi)/sqrt(5) = 0.645613411446..., where phi is the golden ratio (A001622). (End)

%p a:= proc(n) local D,d; D:= map(`modp`,convert(numtheory:-divisors(n),list),10);

%p numboccur(1,D) + numboccur(9,D) - numboccur(3,D) - numboccur(7,D);

%p end proc:

%p seq(a(n),n=1..1000); # _Robert Israel_, Sep 22 2014

%t a[n_] := With[{d = Mod[Divisors[n], 10]}, Count[d, 1|9] - Count[d, 3|7]];

%t Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, May 15 2023 *)

%t a[n_] := DivisorSum[n, KroneckerSymbol[20, #] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2023 *)

%o (PARI) my(m = 20); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))

%o (PARI) a(n) = sumdiv(n, d, kronecker(20, d)); \\ _Amiram Eldar_, Nov 19 2023

%Y Cf. A083911, A083913, A083917, A083919.

%Y Cf. A001622, A003631, A045468.

%K nonn,easy,mult

%O 1,11

%A _N. J. A. Sloane_

%E More terms from _Henry Bottomley_, Jul 08 2003