OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
From Robert Israel, Nov 06 2023: (Start)
Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
All positive multiples of terms are terms. (End)
EXAMPLE
The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
The terms together with their prime indices begin:
90: {1,2,2,3}
180: {1,1,2,2,3}
210: {1,2,3,4}
270: {1,2,2,2,3}
360: {1,1,1,2,2,3}
420: {1,1,2,3,4}
450: {1,2,2,3,3}
462: {1,2,4,5}
525: {2,3,3,4}
540: {1,1,2,2,2,3}
550: {1,3,3,5}
630: {1,2,2,3,4}
720: {1,1,1,1,2,2,3}
MAPLE
N:= 10^4: # for terms <= N
P:= select(isprime, [$1..N]): nP:= nops(P):
R:= {}:
for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
for k from j do
l:= j+k-i;
if l <= k or l > nP then break fi;
v:= P[i]*P[j]*P[k]*P[l];
if v <= N then
R:= R union {seq(t, t=v..N, v)};
fi
od od od:
sort(convert(R, list)); # Robert Israel, Nov 06 2023
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], !UnsameQ@@Total/@Union[Subsets[prix[#], {2}]]&]
CROSSREFS
The complement is too dense.
Distinct semi-sums of prime indices are counted by A366739.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 05 2023
STATUS
approved