login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255785
Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0.
1
90, 177, 361, 715, 1478, 2969, 6186, 12534, 26219, 53487, 112079, 229756, 481725, 990964, 2077526, 4284777, 8978859, 18554317, 38857870, 80416809, 168307678, 348718298, 729394343, 1512628937, 3162067127, 6562395892, 13711273601
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 6*a(n-4) - 7*a(n-5) + 6*a(n-6) + 3*a(n-7) - 6*a(n-8) + 5*a(n-9) + 5*a(n-10) + 5*a(n-11) + 2*a(n-12).
Empirical g.f.: x*(90 + 87*x - 266*x^2 - 351*x^3 - 148*x^4 + 330*x^5 + 122*x^6 - 56*x^7 + 409*x^8 + 369*x^9 + 282*x^10 + 88*x^11) / ((1 + x)*(1 - 2*x - 3*x^2 + 5*x^3 + x^4 + 6*x^5 - 12*x^6 + 9*x^7 - 3*x^8 - 2*x^9 - 3*x^10 - 2*x^11)). - Colin Barker, Dec 19 2018
EXAMPLE
Some solutions for n=4:
..1..1..1....1..1..1....1..0..0....1..1..0....1..1..1....0..1..1....1..0..1
..0..1..1....1..1..0....1..0..1....0..1..0....1..0..1....1..0..0....0..1..0
..1..0..1....1..0..1....0..1..0....0..0..1....0..1..0....0..1..0....1..0..1
..0..1..0....1..1..0....1..0..1....1..0..1....1..0..1....0..0..1....0..1..0
..1..0..1....1..0..1....1..1..0....0..1..1....1..0..1....1..0..1....1..0..1
..1..0..0....1..0..0....1..0..1....1..0..1....0..1..0....0..1..0....0..0..1
CROSSREFS
Column 1 of A255792.
Sequence in context: A119895 A270266 A255792 * A366740 A119896 A179697
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 06 2015
STATUS
approved