OFFSET
1,4
COMMENTS
A semiprime is a product of two primes.
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|n} d * [Omega(d) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
EXAMPLE
The divisors of 12 are 1, 2, 3, 4, 6, 12, of which 4 and 6 are semiprime. Hence a(12) = 4 + 6 = 10.
MAPLE
a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
add(`if`(l[i][2]>1, l[i][1]^2, 0)+
add(l[i][1]*l[j][1], j=i+1..m), i=1..m)
end:
seq(a(n), n=1..120); # Alois P. Heinz, Jul 18 2013
MATHEMATICA
isSP[n_] := Module[{f, l}, f = FactorInteger[n]; l = Length[f]; (l == 2 && f[[1]][[2]] == 1 && f[[2]][[2]] == 1) || (l == 1 && f[[1]][[2]] == 2)]; f[n_] := Module[{a, d, l}, a = {}; d = Divisors[n]; l = Length[d]; For[i = 1, i <= l, i++, If[isSP[d[[i]]], a = Append[a, d[[i]]]]]; a]; Table[Apply[Plus, f[i]], {i, 1, 100}]
PROG
(PARI) a(n) = local(fn, r, om); fn=factor(n); r=om=0; for(i=1, matsize(fn)[1], om+=fn[i, 1]; r+=fn[i, 1]^2*if(fn[i, 2]==1, -1, 1)); (r+om^2)\2 \\ Franklin T. Adams-Watters, Jul 26 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Nov 24 2002
STATUS
approved