OFFSET
0,6
COMMENTS
Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.
EXAMPLE
The a(3) = 1 through a(9) = 14 partitions:
(21) (211) (221) (42) (421) (422) (63)
(2111) (321) (2221) (431) (432)
(2211) (3211) (521) (621)
(21111) (22111) (3221) (3321)
(211111) (4211) (4221)
(22211) (4311)
(32111) (5211)
(221111) (22221)
(2111111) (32211)
(42111)
(222111)
(321111)
(2211111)
(21111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Select[Tuples[#, 3], #[[1]]+#[[2]]==#[[3]]&]!={}&]], {n, 0, 15}]
PROG
(Python)
from collections import Counter
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()), 3))) # Chai Wah Wu, Sep 21 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 19 2023
EXTENSIONS
a(31)-a(48) from Chai Wah Wu, Sep 21 2023
STATUS
approved