OFFSET
1,1
COMMENTS
Or numbers with a prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A363225.
EXAMPLE
We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
65: {3,6}
66: {1,2,5}
70: {1,3,4}
72: {1,1,1,2,2}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Intersection[prix[#], Total/@Tuples[prix[#], 2]]!={}&]
CROSSREFS
A001222 counts prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 27 2023
STATUS
approved