login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046411
Composite numbers the concatenation of whose prime factors is a prime.
12
6, 12, 18, 21, 22, 28, 33, 39, 46, 51, 52, 54, 58, 63, 66, 70, 82, 84, 93, 98, 111, 115, 117, 133, 141, 142, 148, 154, 159, 162, 165, 166, 171, 172, 175, 177, 182, 187, 198, 201, 205, 207, 210, 219, 220, 226, 232, 235, 237, 245, 246, 247, 249, 253, 255, 261
OFFSET
1,1
COMMENTS
For the corresponding primes, see A038514. - Lekraj Beedassy, Jun 05 2009
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Patrick De Geest, Home Primes
EXAMPLE
162 = 2 * 3 * 3 * 3 * 3 and 23333 is a prime, so 162 is in the sequence.
MATHEMATICA
co[n_, k_]:=Nest[FromDigits[Flatten[IntegerDigits[{#, n}]]]&, n, k-1]; Select[Range[261], !PrimeQ[#]&&PrimeQ[FromDigits[Flatten[IntegerDigits[co@@@FactorInteger[#]]]]]&](* Jayanta Basu, Jun 04 2013 *)
PROG
(PARI) is(n)=my(f=factor(n), s=""); for(i=1, #f~, for(j=1, f[i, 2], s=Str(s, f[i, 1]))); isprime(eval(s)) && !isprime(n) \\ Charles R Greathouse IV, May 14 2015
(Python)
from sympy import isprime, factorint
def ok(n):
f = factorint(n)
if sum(e for e in f.values()) < 2: return False
return isprime(int("".join(str(p)*e for p, e in f.items())))
print(list(filter(ok, range(2, 262)))) # Michael S. Branicky, Jun 12 2021
CROSSREFS
Cf. A038514 (corresponding primes), A221220 (factors without multiplicity).
Sequence in context: A316221 A138939 A221220 * A364348 A364537 A350845
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 23 2010
Title clarified by Sean A. Irvine, Jan 16 2021
STATUS
approved