login
A026838
Number of partitions of n into distinct parts, the greatest being even.
10
0, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859
OFFSET
1,6
COMMENTS
Fine's theorem: a(n) - A026837(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an even number of parts and such that parts of every size from 1 to the largest occur. Example: a(8)=3 because we have [3,2,2,1], [2,2,1,1,1,1] and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006
LINKS
I. Pak, On Fine's partition theorems, Dyson, Andrews and missed opportunities, Math. Intelligencer, 25 (No. 1, 2003), 10-16.
FORMULA
G.f.: sum(k>=1, x^(2k) * prod(j=1..2k-1, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118301(2*n), a(2*n-1) = A118302(2*n-1); a(n) = A000009(n) - A026837(n). - Reinhard Zumkeller, Apr 22 2006
EXAMPLE
a(8)=3 because we have [8],[6,2] and [4,3,1].
MAPLE
g:=sum(x^(2*k)*product(1+x^j, j=1..2*k-1), k=1..50): gser:=series(g, x=0, 75): seq(coeff(gser, x, n), n=1..54); # Emeric Deutsch, Apr 04 2006
MATHEMATICA
nn=54; CoefficientList[Series[Sum[x^(2j)Product[1+ x^i, {i, 1, 2j-1}], {j, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 20 2014 *)
CROSSREFS
Sequence in context: A029036 A192530 A281744 * A182229 A017864 A188937
KEYWORD
nonn
STATUS
approved