OFFSET
1,6
COMMENTS
Fine's theorem: a(n) - A026837(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an even number of parts and such that parts of every size from 1 to the largest occur. Example: a(8)=3 because we have [3,2,2,1], [2,2,1,1,1,1] and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
I. Pak, On Fine's partition theorems, Dyson, Andrews and missed opportunities, Math. Intelligencer, 25 (No. 1, 2003), 10-16.
FORMULA
G.f.: sum(k>=1, x^(2k) * prod(j=1..2k-1, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118301(2*n), a(2*n-1) = A118302(2*n-1); a(n) = A000009(n) - A026837(n). - Reinhard Zumkeller, Apr 22 2006
EXAMPLE
a(8)=3 because we have [8],[6,2] and [4,3,1].
MAPLE
g:=sum(x^(2*k)*product(1+x^j, j=1..2*k-1), k=1..50): gser:=series(g, x=0, 75): seq(coeff(gser, x, n), n=1..54); # Emeric Deutsch, Apr 04 2006
MATHEMATICA
nn=54; CoefficientList[Series[Sum[x^(2j)Product[1+ x^i, {i, 1, 2j-1}], {j, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 20 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved