login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017864
Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
1
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 9, 12, 14, 17, 21, 26, 32, 40, 51, 63, 77, 95, 117, 144, 178, 222, 276, 341, 422, 522, 645, 797, 987, 1223, 1513, 1872, 2317, 2867, 3547, 4390, 5435, 6726, 8322
OFFSET
0,15
COMMENTS
Number of compositions of n into parts p where 7 <= p <= 15. [Joerg Arndt, Jun 28 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) for n>12. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[7, 15]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 28 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2}, 60] (* Harvey P. Dale, Sep 19 2022 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2 ]; [n le 15 select I[n] else Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14)+Self(n-15): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A281744 A026838 A182229 * A188937 A029035 A153178
KEYWORD
nonn,easy
AUTHOR
STATUS
approved