login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017865
Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
1
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 9, 12, 16, 19, 23, 28, 34, 42, 53, 68, 85, 105, 129, 159, 196, 243, 304, 380, 473, 586, 726, 899, 1114, 1384, 1722, 2142, 2660, 3301, 4095, 5080, 6305, 7831
OFFSET
0,15
COMMENTS
Number of compositions (ordered partitions) of n into parts 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. - Ilya Gutkovskiy, May 26 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=1, a(8)=1, a(9)=1, a(10)=1, a(11)=1, a(12)=1, a(13)=1, a(14)=2, a(15)=3; for n>15, a(n) = a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16). [Harvey P. Dale, Feb 02 2012]
MATHEMATICA
CoefficientList[Series[1/(1 - Total[x^Range[7, 16]]), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3}, 60] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3]; [n le 16 select I[n] else Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14)+Self(n-15)+Self(n-16): n in [1..60]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A261085 A017876 A356860 * A317143 A351520 A065328
KEYWORD
nonn,easy
AUTHOR
STATUS
approved