login
A029013
Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^8)).
0
1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, 18, 21, 24, 28, 31, 36, 39, 45, 49, 55, 60, 67, 73, 81, 87, 96, 103, 113, 121, 132, 141, 153, 163, 176, 187, 201, 213, 229, 242, 259, 273, 291, 307, 326, 343, 364, 382, 405, 424
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 5 and 8. - Ilya Gutkovskiy, May 13 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 0, 1, -1, -1, 2, -1, -1, 1, 0, -1, 1, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=3, a(5)=4, a(6)=5, a(7)=6, a(8)=8, a(9)=9, a(10)=12, a(11)=13, a(12)=16, a(13)=18, a(14)=21, a(15)=24, a(n)=a(n-1)+a(n-2)-a(n-3)+a(n-5)-a(n-6)-a(n-7)+2*a(n-8)-a(n-9)- a(n-10)+ a(n-11)-a(n-13)+a(n-14)+a(n-15)-a(n-16). - Harvey P. Dale, Aug 26 2012
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^5)(1-x^8)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 2, -1, -1, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, 18, 21, 24}, 60] (* Harvey P. Dale, Aug 26 2012 *)
CROSSREFS
Sequence in context: A017852 A340751 A319069 * A114096 A008582 A069911
KEYWORD
nonn
AUTHOR
STATUS
approved