OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 5, and 7. - Joerg Arndt, Oct 15 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,1,-1,0,0,-1,1,0,-1,1,1,-1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^7)).
a(n) = floor((2*n^3+45*n^2+298*n+956)/840+(-1)^n/16). - Tani Akinari, Oct 15 2014
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^7)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
PROG
(Magma) [Floor((2*n^3+45*n^2+298*n+956)/840+(-1)^n/16): n in [0..60]]; // Vincenzo Librandi, Oct 15 2014
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^7)) + O(x^80)) \\ Michel Marcus, Oct 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved