login
A112192
Coefficients of replicable function number "48h".
3
1, 1, 2, 2, 3, 4, 5, 7, 8, 10, 13, 16, 20, 24, 30, 36, 43, 52, 61, 73, 86, 102, 120, 140, 165, 192, 224, 260, 301, 348, 401, 462, 530, 608, 696, 796, 909, 1035, 1178, 1338, 1518, 1720, 1945, 2198, 2480, 2796, 3148, 3540, 3978, 4464, 5006, 5606, 6273, 7012
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Expansion of f(x^2, x^4) / f(-x, -x^5) in powers of x where f() is Ramanujan's general theta function. - Michael Somos, Sep 30 2015
Expansion of q^(1/2) * eta(q^3) * eta(q^4) / (eta(q) * eta(q^12)) in powers of q. - Michael Somos, Sep 30 2015
Euler transform of period 12 sequence [1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, ...]. - Michael Somos, Sep 30 2015
a(n) = number of partitions of n into parts == +-1, +-2, +-5 (mod 12). - Michael Somos, Sep 30 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 30 2015
a(n) = A112186(2*n) = A112187(2*n). - Michael Somos, Sep 30 2015
Convolution inverse of A262771. - Michael Somos, Sep 30 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 8*x^8 + ...
G.f. = 1/q + q^3 + 2*q^7 + 2*q^11 + 3*q^15 + 4*q^19 + 5*q^23 + 7*q^27 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1-x^(3*k)) * (1-x^(4*k)) / ((1-x^k) * (1-x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^4] / ( QPochhammer[ x] QPochhammer[ x^12]), {x, 0, n}]; (* Michael Somos, Sep 30 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^12 + A)), n))}; /* Michael Somos, Sep 30 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved