login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112192
Coefficients of replicable function number "48h".
3
1, 1, 2, 2, 3, 4, 5, 7, 8, 10, 13, 16, 20, 24, 30, 36, 43, 52, 61, 73, 86, 102, 120, 140, 165, 192, 224, 260, 301, 348, 401, 462, 530, 608, 696, 796, 909, 1035, 1178, 1338, 1518, 1720, 1945, 2198, 2480, 2796, 3148, 3540, 3978, 4464, 5006, 5606, 6273, 7012
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Expansion of f(x^2, x^4) / f(-x, -x^5) in powers of x where f() is Ramanujan's general theta function. - Michael Somos, Sep 30 2015
Expansion of q^(1/2) * eta(q^3) * eta(q^4) / (eta(q) * eta(q^12)) in powers of q. - Michael Somos, Sep 30 2015
Euler transform of period 12 sequence [1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, ...]. - Michael Somos, Sep 30 2015
a(n) = number of partitions of n into parts == +-1, +-2, +-5 (mod 12). - Michael Somos, Sep 30 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 30 2015
a(n) = A112186(2*n) = A112187(2*n). - Michael Somos, Sep 30 2015
Convolution inverse of A262771. - Michael Somos, Sep 30 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 8*x^8 + ...
G.f. = 1/q + q^3 + 2*q^7 + 2*q^11 + 3*q^15 + 4*q^19 + 5*q^23 + 7*q^27 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1-x^(3*k)) * (1-x^(4*k)) / ((1-x^k) * (1-x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^4] / ( QPochhammer[ x] QPochhammer[ x^12]), {x, 0, n}]; (* Michael Somos, Sep 30 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^12 + A)), n))}; /* Michael Somos, Sep 30 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved