login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111901
Number of partitions of n into parts that are primes or squares of primes.
5
1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 30, 37, 44, 53, 63, 75, 89, 105, 123, 145, 169, 197, 229, 266, 307, 355, 408, 469, 538, 615, 703, 801, 912, 1035, 1175, 1330, 1504, 1698, 1914, 2155, 2423, 2721, 3051, 3418, 3824, 4273, 4770, 5319, 5925
OFFSET
0,5
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))). - Ilya Gutkovskiy, Dec 26 2016
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + ...
a(10) = #{ 7+3, 5+5, 5+3+2, 2^2+2^2+2, 2^2+3+3, 2^2+2+2+2, 3+3+2+2, 2+2+2+2+2 } = 8.
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
`if`(tau(d) in [2, 3], d, 0), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 30 2017
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*DivisorSum[j, If[2 <= DivisorSigma[0, #] <= 3, #, 0]&], {j, 1, n}]/n];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
PROG
(PARI) {a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=1, primepi(n), (1 - x^prime(k)^2 + x*O(x^n)) * (1 - x^prime(k))), n))}; /* Michael Somos, Dec 26 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 20 2005
STATUS
approved