login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts that are primes or squares of primes.
5

%I #19 Apr 06 2017 09:46:49

%S 1,0,1,1,2,2,3,4,5,7,8,11,13,17,20,25,30,37,44,53,63,75,89,105,123,

%T 145,169,197,229,266,307,355,408,469,538,615,703,801,912,1035,1175,

%U 1330,1504,1698,1914,2155,2423,2721,3051,3418,3824,4273,4770,5319,5925

%N Number of partitions of n into parts that are primes or squares of primes.

%H Alois P. Heinz, <a href="/A111901/b111901.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))). - _Ilya Gutkovskiy_, Dec 26 2016

%e G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + ...

%e a(10) = #{ 7+3, 5+5, 5+3+2, 2^2+2^2+2, 2^2+3+3, 2^2+2+2+2, 3+3+2+2, 2+2+2+2+2 } = 8.

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(

%p `if`(tau(d) in [2, 3], d, 0), d=divisors(j)), j=1..n)/n)

%p end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 30 2017

%t a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*DivisorSum[j, If[2 <= DivisorSigma[0, #] <= 3, #, 0]&], {j, 1, n}]/n];

%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Apr 06 2017, after _Alois P. Heinz_ *)

%o (PARI) {a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=1, primepi(n), (1 - x^prime(k)^2 + x*O(x^n)) * (1 - x^prime(k))), n))}; /* _Michael Somos_, Dec 26 2016 */

%Y Cf. A000607, A090677, A023893, A111902.

%K nonn

%O 0,5

%A _Reinhard Zumkeller_, Aug 20 2005