login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112186
McKay-Thompson series of class 48a for the Monster group.
2
1, 1, 1, -1, 2, -1, 2, 1, 3, 0, 4, -1, 5, 1, 7, 0, 8, 0, 10, 1, 13, -2, 16, 0, 20, 3, 24, -2, 30, -2, 36, 4, 43, 0, 52, -3, 61, 2, 73, -1, 86, -1, 102, 3, 120, -4, 140, -1, 165, 8, 192, -5, 224, -6, 260, 10, 301, -2, 348, -7, 401, 7, 462, -2, 530, -2, 608, 8, 696, -10, 796, -3, 909, 18, 1035, -12
OFFSET
0,5
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A + q/A, where A = q^(1/2)*(eta(q^6)*eta(q^8))/(eta(q^2) *eta(q^24)), in powers of q. - G. C. Greubel, Jun 19 2018
EXAMPLE
T48a = 1/q + q + q^3 - q^5 + 2*q^7 - q^9 + 2*q^11 + q^13 + 3*q^15 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^6]*eta[q^8])/(eta[q^2]*eta[q^24]); a:= CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 30}] (* G. C. Greubel, Jun 19 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^6)*eta(q^8))/(eta(q^2) *eta(q^24)); Vec(A + q/A) \\ G. C. Greubel, Jun 19 2018
CROSSREFS
Sequence in context: A092953 A058574 A112165 * A112187 A341621 A074093
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved