login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112183
McKay-Thompson series of class 40e for the Monster group.
1
1, 1, -1, 1, 0, 1, 0, -1, 0, 0, 2, 2, -1, 1, 0, 2, 1, -1, 1, 0, 4, 3, -3, 2, 0, 4, 2, -3, 1, 0, 7, 5, -5, 4, 0, 7, 4, -5, 3, 0, 12, 9, -8, 6, 0, 13, 7, -9, 5, 0, 19, 14, -13, 9, 0, 21, 12, -14, 8, 0, 31, 22, -21, 15, 0, 34, 19, -23, 13, 0, 47, 33, -31, 22, 0, 52, 31, -35, 21, 0, 71, 49, -48, 33, 0, 79, 47
OFFSET
0,11
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of (T10b + 4)^(1/4), where T10b = A058103, in powers of q. - G. C. Greubel, Jun 28 2018
EXAMPLE
T40e = 1/q +q^3 -q^7 +q^11 +q^19 -q^27 +2*q^39 +2*q^43 -q^47 +...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 120; A:= eta[q]/eta[q^25]; B:= (eta[q^2]*eta[q^25])/(eta[q]*eta[q^50]); c:= ((eta[q]*eta[q^2])/( eta[q^5]*eta[q^10]))^2; f5 := (c /. {q -> q^5}); T10b := (2 + c + 5*(c/A^2)*(1 - 1/B)^2 + 25/f5); a:= CoefficientList[Series[ (q*(T10b + 4) + O[q]^nmax)^(1/4), {q, 0, 110}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jun 28 2018 *)
CROSSREFS
Sequence in context: A081389 A133685 A281492 * A275451 A269317 A119557
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved