login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112182
McKay-Thompson series of class 40d for the Monster group.
2
1, -1, 0, -1, 1, -2, 2, -1, 3, -3, 3, -3, 4, -5, 5, -7, 8, -8, 9, -10, 13, -15, 14, -17, 20, -23, 24, -26, 31, -34, 38, -41, 46, -52, 55, -62, 70, -75, 82, -90, 103, -112, 118, -131, 145, -161, 172, -185, 208, -225, 244, -265, 288, -316, 339, -370, 404, -435, 469, -507, 557, -601, 640, -696, 755, -818
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of chi(-x) * chi(-x^5) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jul 02 2014
Expansion of q^(1/4) * eta(q) * eta(q^5) / (eta(q^2) * eta(q^10)) in powers of q. - Michael Somos, Jul 02 2014
Euler transform of period 10 sequence [ -1, 0, -1, 0, -2, 0, -1, 0, -1, 0, ...]. - Michael Somos, Jul 02 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (u-v^3) - 3 * u*v * (1 + u*v). - Michael Somos, Jul 02 2014
a(n) = (-1)^n * A112209(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/5)) / (2^(3/2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
EXAMPLE
G.f. = 1 - x - x^3 + x^4 - 2*x^5 + 2*x^6 - x^7 + 3*x^8 - 3*x^9 + 3*x^10 + ...
T40d = 1/q - q^3 - q^11 + q^15 - 2*q^19 + 2*q^23 - q^27 + 3*q^31 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Jul 02 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^5 + A) / (eta(x^2 + A) * eta(x^10 + A)), n))}; /* Michael Somos, Jul 02 2014 */
CROSSREFS
Cf. A112209.
Sequence in context: A245325 A091224 A308684 * A112209 A240127 A109524
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved