login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112209
McKay-Thompson series of class 80a for the Monster group.
2
1, 1, 0, 1, 1, 2, 2, 1, 3, 3, 3, 3, 4, 5, 5, 7, 8, 8, 9, 10, 13, 15, 14, 17, 20, 23, 24, 26, 31, 34, 38, 41, 46, 52, 55, 62, 70, 75, 82, 90, 103, 112, 118, 131, 145, 161, 172, 185, 208, 225, 244, 265, 288, 316, 339, 370, 404, 435, 469, 507, 557, 601, 640, 696, 755, 818
OFFSET
0,6
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(Pi*sqrt(n/5)) / (2^(3/2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017
Expansion of q^(1/4)*(eta(q^2)*eta(q^10))^2/( eta(q)*eta(q^4)*eta(q^5) *eta(q^20)) in powers of q. - G. C. Greubel, Jun 20 2018
EXAMPLE
T80a = 1/q +q^3 +q^11 +q^15 +2*q^19 +2*q^23 +q^27 +3*q^31 +...
MATHEMATICA
nmax = 70; CoefficientList[Series[Product[(1 + x^(2*k-1))/((1 + x^(10*k))*(1 - x^(10*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/4)*(eta[q^2]*eta[q^10])^2/( eta[q]*eta[q^4]*eta[q^5]*eta[q^20]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jun 20 2018 *)
PROG
(PARI) q='q+O('q^70); Vec((eta(q^2)*eta(q^10))^2/( eta(q)*eta(q^4) *eta(q^5)*eta(q^20))) \\ G. C. Greubel, Jun 20 2018
CROSSREFS
Cf. A112182.
Sequence in context: A091224 A308684 A112182 * A240127 A109524 A191521
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved