login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 80a for the Monster group.
2

%I #17 Jun 20 2018 06:55:35

%S 1,1,0,1,1,2,2,1,3,3,3,3,4,5,5,7,8,8,9,10,13,15,14,17,20,23,24,26,31,

%T 34,38,41,46,52,55,62,70,75,82,90,103,112,118,131,145,161,172,185,208,

%U 225,244,265,288,316,339,370,404,435,469,507,557,601,640,696,755,818

%N McKay-Thompson series of class 80a for the Monster group.

%H G. C. Greubel, <a href="/A112209/b112209.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F a(n) ~ exp(Pi*sqrt(n/5)) / (2^(3/2) * 5^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 30 2017

%F Expansion of q^(1/4)*(eta(q^2)*eta(q^10))^2/( eta(q)*eta(q^4)*eta(q^5) *eta(q^20)) in powers of q. - _G. C. Greubel_, Jun 20 2018

%e T80a = 1/q +q^3 +q^11 +q^15 +2*q^19 +2*q^23 +q^27 +3*q^31 +...

%t nmax = 70; CoefficientList[Series[Product[(1 + x^(2*k-1))/((1 + x^(10*k))*(1 - x^(10*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 30 2017 *)

%t eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/4)*(eta[q^2]*eta[q^10])^2/( eta[q]*eta[q^4]*eta[q^5]*eta[q^20]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 70}] (* _G. C. Greubel_, Jun 20 2018 *)

%o (PARI) q='q+O('q^70); Vec((eta(q^2)*eta(q^10))^2/( eta(q)*eta(q^4) *eta(q^5)*eta(q^20))) \\ _G. C. Greubel_, Jun 20 2018

%Y Cf. A112182.

%K nonn

%O 0,6

%A _Michael Somos_, Aug 28 2005