login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112212
McKay-Thompson series of class 84C for the Monster group.
4
1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 3, 3, 4, 4, 4, 6, 7, 7, 7, 9, 10, 12, 13, 14, 17, 18, 19, 22, 26, 28, 29, 34, 38, 41, 44, 50, 57, 60, 65, 72, 81, 86, 94, 105, 114, 124, 133, 146, 161, 174, 187, 204, 224, 240, 258, 282, 309, 332, 354, 386, 419, 450, 481, 524, 569, 606
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Given g.f. A(x), the first term of the left side of Cayley's identity is A(q). - Michael Somos, Dec 03 2013
REFERENCES
A. Cayley, An elliptic-transcendant identity, Messenger of Math., 2 (1873), p. 179.
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q^2)^2 * eta(q^14)^2 / (eta(q) * eta(q^4) * eta(q^7) * eta(q^28)) in powers of q. - Michael Somos, Dec 03 2013
Euler transform of period 28 sequence [1, -1, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 2, -1, 1, 0, 1, -1, 1, 0, ...]. - Michael Somos, Dec 03 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (28 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 03 2013
G.f.: Product_{k>0} (1 + x^(2*k - 1)) * (1 + x^(14*k - 7)). - Michael Somos, Dec 03 2013
a(n) = (-1)^n * A102314(n). a(2*n + 1) = A093950(n). - Michael Somos, Dec 03 2013
a(n) ~ exp(2*Pi*sqrt(n/21)) / (2 * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 3*x^10 + ...
T84C = 1/q + q^2 + q^8 + q^11 + q^14 + q^17 + 2*q^20 + 3*q^23 + 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^7, x^14], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] Product[ 1 + x^k, {k, 7, n, 14}], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^14 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^7 + A) * eta(x^28 + A)), n))}; /* Michael Somos, Dec 03 2013 */
CROSSREFS
Sequence in context: A205780 A204905 A082597 * A102314 A205146 A031248
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved