OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Given g.f. A(x), the first term of the left side of Cayley's identity is A(q). - Michael Somos, Dec 03 2013
REFERENCES
A. Cayley, An elliptic-transcendant identity, Messenger of Math., 2 (1873), p. 179.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q^2)^2 * eta(q^14)^2 / (eta(q) * eta(q^4) * eta(q^7) * eta(q^28)) in powers of q. - Michael Somos, Dec 03 2013
Euler transform of period 28 sequence [1, -1, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 2, -1, 1, 0, 1, -1, 1, 0, ...]. - Michael Somos, Dec 03 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (28 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 03 2013
G.f.: Product_{k>0} (1 + x^(2*k - 1)) * (1 + x^(14*k - 7)). - Michael Somos, Dec 03 2013
a(n) ~ exp(2*Pi*sqrt(n/21)) / (2 * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 3*x^10 + ...
T84C = 1/q + q^2 + q^8 + q^11 + q^14 + q^17 + 2*q^20 + 3*q^23 + 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^7, x^14], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] Product[ 1 + x^k, {k, 7, n, 14}], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^14 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^7 + A) * eta(x^28 + A)), n))}; /* Michael Somos, Dec 03 2013 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved