login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112179
McKay-Thompson series of class 40B for the Monster group.
2
1, 2, 1, 2, 4, 6, 9, 8, 13, 20, 22, 28, 34, 46, 57, 68, 87, 104, 127, 152, 187, 232, 267, 318, 388, 462, 545, 632, 753, 896, 1043, 1216, 1416, 1664, 1928, 2228, 2597, 2996, 3454, 3976, 4585, 5286, 6031, 6900, 7918, 9060, 10325, 11720, 13372, 15228
OFFSET
0,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(sqrt(2*n/5)*Pi) / (2^(5/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017
Expansion of q^(1/2)*((eta(q^2)*eta(q^10))^2/(eta(q)*eta(q^4)*eta(q^5) *eta(q^20)))^2 in powers of q. - G. C. Greubel, Feb 13 2018
EXAMPLE
T40B = 1/q +2*q +q^3 +2*q^5 +4*q^7 +6*q^9 +9*q^11 +8*q^13 +...
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[((1 + x^(2*k-1))/((1 + x^(10*k))*(1 - x^(10*k-5))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)
eta[q_] := q^(1/24)*QPochhammer[q]; e40B:= q^(1/2)*((eta[q^2]*eta[q^10] )^2/(eta[q]*eta[q^4]*eta[q^5]*eta[q^20]))^2; Table[ SeriesCoefficient[ e40B, {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 13 2018 *)
PROG
(PARI) q='q+O('q^50); A = ((eta(q^2)*eta(q^10))^2/(eta(q)*eta(q^4)* eta(q^5)*eta(q^20)))^2; Vec(A) \\ G. C. Greubel, Jun 16 2018
CROSSREFS
Sequence in context: A283334 A301413 A305056 * A058553 A038067 A136102
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved