login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281492
Expansion of f(x, x^3) * f(x^4, x^5) in powers of x where f(, ) is Ramanujan's general theta function.
4
1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 1, 1, 2, 3, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 1, 2, 1, 0, 4, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 3, 2, 1, 1, 2, 2, 1, 1, 2, 0, 2, 0, 1, 2, 2, 2, 0
OFFSET
0,6
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, -1, 1, 0, 2, -1, 1, -2, 0, -2, 1, -1, 2, 0, 1, -1, 1, -2, ...].
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 1)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-5)) * (1 + x^(9*k-4)) * (1 - x^(9*k)).
2 * a(n) = A281451(128*n + 17).
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + x^8 + 2*x^10 + x^11 + ...
G.f. = q^5 + q^41 + q^113 + q^149 + 2*q^185 + 2*q^221 + q^257 + q^293 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x^4, x^9] QPochhammer[ -x^5, x^9] QPochhammer[ x^9], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(36*n + 5, d, kronecker(-4, d)) / 2)};
CROSSREFS
Cf. A281451.
Sequence in context: A185304 A081389 A133685 * A112183 A275451 A269317
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2017
STATUS
approved