login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281490
Expansion of f(x, x^3) * f(x, x^8) in powers of x where f(, ) is Ramanujan's general theta function.
5
1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 1, 3, 1, 0, 1, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 0, 3, 0, 1, 1, 0, 4, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 3, 1, 0, 0, 0, 0, 1, 3
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2)*(x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 7)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-8)) * (1 + x^(9*k-1)) * (1 - x^(9*k)).
Convolution of sequences A010054 and A281814.
2 * a(n) = A281451(32*n + 25).
EXAMPLE
G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^29 + 2*q^65 + q^101 + q^137 + q^173 + q^245 + q^281 + q^317 + q^353 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x, x^9] QPochhammer[ -x^8, x^9] QPochhammer[ x^9], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(36*n + 29, d, kronecker(-4, d)) / 2)};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); n = 36*n + 29; A = factor(n); prod(k=1, matsize(A) [1], [p, e] = A[k, ]; if(p%4==1, e+1, 1-e%2)) / 2)};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2017
STATUS
approved