OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2)*(x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 7)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-8)) * (1 + x^(9*k-1)) * (1 - x^(9*k)).
2 * a(n) = A281451(32*n + 25).
EXAMPLE
G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^29 + 2*q^65 + q^101 + q^137 + q^173 + q^245 + q^281 + q^317 + q^353 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x, x^9] QPochhammer[ -x^8, x^9] QPochhammer[ x^9], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(36*n + 29, d, kronecker(-4, d)) / 2)};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); n = 36*n + 29; A = factor(n); prod(k=1, matsize(A) [1], [p, e] = A[k, ]; if(p%4==1, e+1, 1-e%2)) / 2)};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2017
STATUS
approved