login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133685 Let p = prime(n); then a(n) = (sum of prime factors of p+1) - (sum of prime factors of p-1). a(1) = 2 by convention. 2
2, 2, 1, 1, 0, 2, 0, 1, -4, -1, 0, 11, 1, 3, -14, -6, -19, 21, 5, -2, 27, -5, -29, -4, 3, 8, -3, -42, 5, 9, -1, -2, 5, -12, -26, 10, 61, 31, -69, -13, -76, 7, -11, 84, 1, -3, 40, -25, -89, 4, -14, -10, 8, 0, 32, -113, -55, 9, 111, 34, 23, -58, -3, -16, 137, -25, 66, 10, -139, -17, 43, -164, -35, -8, 10, -176, -78, 180, 54, 22 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A001414(A000040(n)+1)-A001414(A000040(n)-1), n>1. - R. J. Mathar, Jan 18 2008

EXAMPLE

a(2) = (2+2) - 2 = 2 - for prime 3

a(3) = (2+3) - (2+2) = 1 - for prime 5

a(4) = (2+2+2) - (2+3) = 1 - for prime 7

a(5) = (2+2+3) - (2+5) = 0 - for prime 11

MAPLE

A001414 := proc(n) local ifs; ifs := ifactors(n)[2] ; add(op(1, i)*op(2, i), i=ifs) ; end: A133685 := proc(n) if n = 1 then 2; else A001414(ithprime(n)+1)-A001414(ithprime(n)-1) ; fi ; end: seq(A133685(n), n=1..80) ; # R. J. Mathar, Jan 18 2008

MATHEMATICA

a = {2}; b[n_] := Sum[FactorInteger[n][[i, 1]]*FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}];; Do[AppendTo[a, b[Prime[n] + 1] - b[Prime[n] - 1]], {n, 2, 70}]; a (* Stefan Steinerberger, Jan 18 2008 *)

CROSSREFS

Cf. A000040, A133578.

Sequence in context: A123736 A185304 A081389 * A281492 A112183 A275451

Adjacent sequences:  A133682 A133683 A133684 * A133686 A133687 A133688

KEYWORD

easy,sign

AUTHOR

Alexander R. Povolotsky, Dec 31 2007, corrected Jan 03 2007

EXTENSIONS

More terms from R. J. Mathar and Stefan Steinerberger, Jan 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 03:37 EDT 2020. Contains 335459 sequences. (Running on oeis4.)