login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133682
Number of regular complex polytopes in n-dimensional unitary complex space.
0
1, 22, 8, 7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
1,2
COMMENTS
In each dimension there are infinite families which we count as a single polytope: the generalized complex n-cube with generalized Schlaefli symbol m(4)2(3)2...2(3)2 with m^n vertices and its dual, the generalized complex n-cross-polytope.
REFERENCES
H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, 1974.
E. Schulte, Symmetry of Polytopes and Polyhedra, in J. E. Goodman and J. O'Rourke, Handbook of discrete and computational geometry, 2nd edition, Chapman & Hall / CRC, 2004.
LINKS
G. C. Shephard, Regular complex polytopes, Proc. Lond. Math. Soc. (3), Vol. 2 (1952), pp. 82-97.
EXAMPLE
a(3) = 8 because in C^3 the regular complex polytopes correspond to the following generalized Schlaefli symbols: m(4)2(3)2 (generalized complex cube), 2(3)2(4)m (generalized complex octahedron), 2(6)2(6)2 (tetrahedron), 2(6)2(10)2 (icosahedron), 2(10)2(6)2 (dodecahedron), 3(3)3(3)3, 3(3)3(4)2, 2(4)2(3)3.
CROSSREFS
Cf. A060296.
Sequence in context: A159990 A243629 A040466 * A134911 A298145 A298176
KEYWORD
nonn
AUTHOR
Brian Hopkins, Jan 03 2008
STATUS
approved