OFFSET
0,2
COMMENTS
REFERENCES
Cox, David A., Galois theory. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2004. xx+559 pp. ISBN: 0-471-43419-1 MR2119052 (2006a:12001). See page 9.
A. F. Horadam, Eight hundred years young, The Australian Mathematics Teacher 31 (1975) 123-134.
Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 21.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Ezra Brown and Jason C. Brunson, Fibonacci's forgotten number
Stanislaw Glushkov, On approximation methods of Leonardo Fibonacci, Historia Mathematica 3 (1976), pp. 291-296.
J. J. O'Connor and E. F. Robertson, Fibonacci
Clark Kimberling, Fibonacci [containing the Horadam article]
Trond Steihaug, Fibonacci and digit-by-digit computation; An example of reverse engineering in computational mathematics, arXiv:2211.00504 [math.HO], 2022.
Wikipedia, Sexagesimal
EXAMPLE
The root is 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 38/60^6 + 30/60^7 + 50/60^8 + ...
Leonardo's approximation 1;22.7.42.33.4.40 is to be read as 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6 = A159992(5)/A159993(5) + 40/60^6 = 1596577777 / 1166400000 ~= 1.3688081078532235 and f(1596577777/1166400000) ~= +6.7193226361369/10^10; compare this to A159992(6)/A159993(6) = A159992(5)/A159993(5) + 38/60^6 = 31931555539 / 23328000000 ~= 1.3688081078103566 and f(31931555539/23328000000) ~= -2.3239469709985/10^10.
Assuming that Leonardo did similar calculations, the question may arise: why he didn't find a(6) = 38 instead of 40? Supposedly he just avoided the effort to calculate f(A159992(5)/A159993(5) + k/60^6) for k = 37, 38, or 39: 37/60^6 = 37/46656000000, 38/60^6 = 19/23328000000, or 39/60^6 = 13/15552000000; finally, he did calculate only f(A159992(5)/A159993(5) + k/60^6) for k = 36 and k = 40, the less complex cases concerning sexagesimal fractional arithmetic with 36/60^6 = 1/1296000000 and 40/60^6 = 1/1166400000: f(A159992(5)/A159993(5) + 36/60^6) ~= -1.9999999988632783, f(A159992(5)/A159993(5) + 40/60^6) ~= +0.0000000006719323.
The latter result looks precise enough and could explain and justify Leonardo's 'rounding'.
MATHEMATICA
RealDigits[ Solve[x^3 + 2 x^2 + 10 x - 20 == 0, x][[3, 1, 2]], 60, 111][[1]] (* Robert G. Wilson v, May 11 2012 *)
PROG
(PARI) polrootsreal(x^3+2*x^2+10*x-20)[1] \\ Charles R Greathouse IV, Apr 14 2014
CROSSREFS
KEYWORD
AUTHOR
Reinhard Zumkeller, May 01 2009
STATUS
approved