OFFSET
-1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000 (terms -1..498 from G. A. Edgar)
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
The g.f. T10b satisfies the quintic equation P5(T10b(q)) = T2A(q^5), where we used T2A from A101558 and polynomial P5(t) = t^5-10*t^3+20*t^2-15*t-100. - G. A. Edgar, Apr 03 2017
EXAMPLE
T10b = 1/q + 2*q - 4*q^2 + 7*q^3 + 12*q^4 + 4*q^6 - 13*q^7 + 12*q^8 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= eta[q]/eta[q^25]; B:= (eta[q^2]* eta[q^25])/(eta[q]*eta[q^50]); c:= ((eta[q]*eta[q^2])/(eta[q^5]* eta[q^10]))^2; f5:= (c/. {q -> q^5}); a:= CoefficientList[Series[ Simplify[ q*(2 + c + 5*(c/(A)^2)*(1 - 1/B)^2 + 25/f5), q>0], {q, 0, 60}], q]; Table[ a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 17 2018, fixed by Vaclav Kotesovec, Jul 03 2018 *)
PROG
(PARI) q='q+O('q^50); A= eta(q)/(q*eta(q^25)); B = (eta(q^2)*eta(q^25) )/(q*eta(q)*eta(q^50)); C=((eta(q)*eta(q^2))/(eta(q^5)*eta(q^10)))^2/q; f5=((eta(q^5)*eta(q^10))/(eta(q^25)*eta(q^50)))^2/q^5; Vec(2 + C + 5*(C/(A)^2)*(1 - 1/B)^2 + 25/f5) \\ G. C. Greubel, Jun 17 2018
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved