login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058101
McKay-Thompson series of class 10E for Monster.
5
1, 0, 1, 2, 2, -2, -1, 0, -4, -2, 5, 2, 0, 8, 2, -8, -3, -2, -14, -6, 14, 6, 4, 24, 12, -24, -11, -4, -40, -16, 38, 16, 5, 62, 24, -60, -24, -10, -94, -40, 91, 38, 18, 144, 62, -136, -57, -24, -214, -88, 201, 82, 30, 308, 122, -288, -117, -48, -440, -180, 410, 168, 74, 624, 262, -578, -238, -96, -874, -356, 804
OFFSET
-1,4
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
EXAMPLE
T10E = 1/q + q + 2*q^2 + 2*q^3 - 2*q^4 - q^5 - 4*q^7 - 2*q^8 + 5*q^9 + 2*q^10 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A058101:= CoefficientList[Series[ q*(3 + (eta[q]^3*eta[q^5])/(eta[q^2]*eta[q^10]^3)), {q, 0, 60}], q]; Table[A058101[[n]], {n, 1, 50}] (* G. C. Greubel, May 28 2018 *)
PROG
(PARI) q='q+O('q^60); {h =(eta(q)^3*eta(q^5)/(eta(q^2)*eta(q^10)^3))/q}; Vec(3 + h) \\ G. C. Greubel, May 28 2018
CROSSREFS
Cf. A138516 (same sequence except for n=0).
Sequence in context: A114898 A223903 A112159 * A132980 A106823 A160096
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved