login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058099
McKay-Thompson series of class 10C for Monster.
2
1, 0, -3, 6, 2, 2, -5, -16, 12, 2, 17, -10, -48, 56, 10, 24, -35, -126, 106, 14, 94, -70, -284, 296, 60, 152, -175, -620, 536, 80, 398, -320, -1243, 1218, 216, 652, -680, -2422, 2122, 328, 1435, -1190, -4470, 4240, 734, 2312, -2285, -8120, 7130, 1112, 4549, -3850, -14178, 13132, 2210
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of 2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2 in powers of q. - G. C. Greubel, May 05 2018
EXAMPLE
T10C = 1/q - 3*q + 6*q^2 + 2*q^3 + 2*q^4 - 5*q^5 - 16*q^6 + 12*q^7 + 2*q^8 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q] a:= CoefficientList[Series[2 + (eta[q]*eta[q^2]/(eta[q^5]*eta[q^10]))^2, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 05 2018 *)
PROG
(PARI) q='q+O('q^30); Vec(2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2/q) \\ G. C. Greubel, May 05 2018
CROSSREFS
Cf. A132041 (same sequence except for n=0).
Sequence in context: A159963 A120907 A133358 * A292789 A124085 A132120
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved