%I #19 May 06 2018 00:48:46
%S 1,0,-3,6,2,2,-5,-16,12,2,17,-10,-48,56,10,24,-35,-126,106,14,94,-70,
%T -284,296,60,152,-175,-620,536,80,398,-320,-1243,1218,216,652,-680,
%U -2422,2122,328,1435,-1190,-4470,4240,734,2312,-2285,-8120,7130,1112,4549,-3850,-14178,13132,2210
%N McKay-Thompson series of class 10C for Monster.
%H G. C. Greubel, <a href="/A058099/b058099.txt">Table of n, a(n) for n = -1..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F Expansion of 2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2 in powers of q. - _G. C. Greubel_, May 05 2018
%e T10C = 1/q - 3*q + 6*q^2 + 2*q^3 + 2*q^4 - 5*q^5 - 16*q^6 + 12*q^7 + 2*q^8 + ...
%t eta[q_]:= q^(1/24)*QPochhammer[q] a:= CoefficientList[Series[2 + (eta[q]*eta[q^2]/(eta[q^5]*eta[q^10]))^2, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_,May 05 2018 *)
%o (PARI) q='q+O('q^30); Vec(2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2/q) \\ _G. C. Greubel_, May 05 2018
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%Y Cf. A132041 (same sequence except for n=0).
%K sign
%O -1,3
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _Michel Marcus_, Feb 18 2014