login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112159
McKay-Thompson series of class 20C for the Monster group.
4
1, 0, 1, -2, 2, 2, -1, 0, -4, 2, 5, -2, 0, -8, 2, 8, -3, 2, -14, 6, 14, -6, 4, -24, 12, 24, -11, 4, -40, 16, 38, -16, 5, -62, 24, 60, -24, 10, -94, 40, 91, -38, 18, -144, 62, 136, -57, 24, -214, 88, 201, -82, 30, -308, 122, 288, -117, 48, -440, 180, 410, -168, 74, -624, 262, 578, -238, 96, -874, 356
OFFSET
-1,4
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of 2 + (eta(q)*eta(q^4)*eta(q^10)/(eta(q^2)*eta(q^5) *eta(q^20)))^2 in powers of q. - G. C. Greubel, Jun 06 2018
EXAMPLE
T20C = 1/q + q - 2*q^2 + 2*q^3 + 2*q^4 - q^5 - 4*q^7 + 2*q^8 + 5*q^9 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(2 + (eta[q]*eta[q^4]*eta[q^10]/(eta[q^2]*eta[q^5]*eta[q^20]))^2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 06 2018 *)
PROG
(PARI) q='q+O('q^80); F = 2 + (eta(q)*eta(q^4)*eta(q^10)/(eta(q^2) *eta(q^5)*eta(q^20)))^2/q; Vec(F) \\ G. C. Greubel, Jun 06 2018
CROSSREFS
Sequence in context: A108839 A114898 A223903 * A058101 A132980 A106823
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved