login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160096
Partial sums of A010815 starting with offset 1, and signed (+ + - - + + ...).
3
1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,2
COMMENTS
INVERT transform of the sequence = A137682: (1, 3, 7, 17, 40, 96, 228, ...).
From Mats Granvik, Jan 01 2015: (Start)
(1) The positive integers are the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k) if n >= k, otherwise 0;
(2) This sequence a(n), in turn, is the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, ...
1, 0, 0, 1, 0, 0, 0, ...
1, 0,-1, 0, 1, 0, 0, ...
1, 0, 0,-1, 0, 1, 0, ...
1, 0, 0,-1,-1, 0, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k) if n >= k, otherwise 0;
(3) The partition numbers are the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 2, 1, 1, 0, 0, 0, ...
1, 2, 2, 1, 1, 0, 0, ...
1, 3, 3, 2, 1, 1, 0, ...
1, 3, 4, 3, 2, 1, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k) if n >= k, otherwise 0;
(4) The number of divisors of "n" is the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, ...
1, 0, 0, 0, 1, 0, 0, ...
1, 1, 1, 0, 0, 1, 0, ...
1, 0, 0, 0, 0, 0, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k) if n >= k, otherwise 0.
In the four cases of recurrences only the summation indices within the sums change, from (1) "n-1" and "n-1" to (2) "k-1" and "n-1" to (3) "n-1" and "k-1" to (4) "k-1" and "k-1".
(End)
FORMULA
Partial sums of Euler's q series (signed), starting from offset 1 = (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, ...).
G.f.: (1 - f(-x)) / (1 - x) where f(-x) is the g.f. of A010815. - Michael Somos, Jan 02 2015
Partial sums of A257628. - Georg Fischer, May 29 2023
EXAMPLE
The series begins (1, 2, 2, 2, 1, 1, 0, ...) since the signed q-series = (1, 1, 0, 0, -1, 0, ...).
G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6 + x^12 + x^13 + x^14 + ...
MATHEMATICA
(* A160096 as row sums of recursively defined table *)
Clear[t]; nn = 90; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, n - 1}], 0]; PartialSumsOfEulerqSeries = Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *)
a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ x]) / (1 - x), {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
CoefficientList[Series[q*(1/(1 - q)^(2)*QHypergeometricPFQ[{q, q}, {q^2, q}, q, q^2]), {q, 0, 89}], q] (* Mats Granvik, Jan 09 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - eta(x + x * O(x^n))) / (1 - x), n))}; /* Michael Somos, Jan 02 2015 */
CROSSREFS
Cf. (1) A000027, (2) A160096, (3) A000041, (4) A000005.
Sequence in context: A058101 A132980 A106823 * A029446 A358479 A288160
KEYWORD
nonn
AUTHOR
Gary W. Adamson, May 01 2009
EXTENSIONS
More terms from Mats Granvik, Jan 01 2015
STATUS
approved