login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137682
Left border of triangle A137680.
5
1, 1, 3, 7, 17, 40, 96, 228, 544, 1296, 3089, 7361, 17544, 41810, 99643, 237471, 565946, 1348773, 3214424, 7660679, 18257085, 43510652, 103695461, 247129108, 588963062, 1403628615, 3345155947, 7972242937, 18999609718, 45280252031
OFFSET
1,3
COMMENTS
Each term in the sequence (n > 1) = sum of previous terms of triangle A137680 = partial sums of sequence A137681: (1, 2, 4, 10, 23, ...).
Starting (1, 3, 7, ...) = INVERT transform of A160096. - Gary W. Adamson, May 01 2009
FORMULA
Partial sums of sequence A137681 prefaced with a 1. a(n) is the sum of all terms in rows 1 through (n-1) in triangle A137680.
EXAMPLE
First few rows of triangle A137680 =
1;
1, 1;
3, 0, 1;
7, 2, 0, 1;
...
a(5) = 17 is the sum of 1 through 4 row terms of triangle A137680: (1 + 2 + 4 + 10); where (1, 2, 4, 10, 23, ...) = A137681 = row sums of triangle A137680 = first difference row of A137682, n > 1.
MAPLE
A137682 := proc(n)
A137680(n, 1) ;
end proc:
seq(A137682(n), n=1..30) ; # R. J. Mathar, Aug 12 2012
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k < 1 || k > n, 0, n == 1, 1, k == 1, Sum[T[r, j], {r, 1, n-1}, {j, 1, r}], True, T[n-1, k-1] - T[n-k, k-1]];
a[n_] := T[n, 1];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 19 2024, after R. J. Mathar in A137680 *)
CROSSREFS
Cf. A160096.
Sequence in context: A309538 A036885 A247300 * A190360 A167213 A249753
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 05 2008
STATUS
approved