login
A160098
Positive numbers y such that y^2 is of the form x^2+(x+601)^2 with integer x.
4
425, 601, 1261, 1289, 3005, 7141, 7309, 17429, 41585, 42565, 101569, 242369, 248081, 591985, 1412629, 1445921, 3450341, 8233405, 8427445, 20110061, 47987801, 49118749, 117210025, 279693401, 286285049, 683150089, 1630172605
OFFSET
1,1
COMMENTS
(-297, a(1)) and (A111258(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+601)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+418*sqrt(2))/601 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (361299+5950*sqrt(2))/601^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=425, a(2)=601, a(3)=1261, a(4)=1289, a(5)=3005, a(6)=7141.
G.f.: (1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 601*A001653(k) for k >= 1.
EXAMPLE
(-297, a(1)) = (-297, 425) is a solution: (-297)^2+(-297+601)^2 = 88209+92416 = 180625 = 425^2.
(A111258(1), a(2)) = (0, 601) is a solution: 0^2+(0+601)^2 = 361201 = 601^2.
(A111258(3), a(4)) = (560, 1289) is a solution: 560^2+(560+601)^2 = 313600+1347921 = 1661521 = 1289^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {425, 601, 1261, 1289, 3005, 7141}, 50] (* G. C. Greubel, Apr 22 2018 *)
PROG
(PARI) {forstep(n=-300, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201, &k), print1(k, ", ")))}
(PARI) x='x+O('x^30); Vec((1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 22 2018
(Magma) I:=[425, 601, 1261, 1289, 3005, 7141]; [n le 6 select I[n] else 5*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 22 2018
CROSSREFS
Cf. A111258, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160099 (decimal expansion of (843+418*sqrt(2))/601), A160100 (decimal expansion of (361299+5950*sqrt(2))/601^2).
Sequence in context: A232359 A294714 A294712 * A349940 A203343 A207233
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved