login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111258
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+601)^2 = y^2.
6
0, 539, 560, 1803, 4740, 4859, 12020, 29103, 29796, 71519, 171080, 175119, 418296, 998579, 1022120, 2439459, 5821596, 5958803, 14219660, 33932199, 34731900, 82879703, 197772800, 202433799, 483059760, 1152705803, 1179872096
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+601, y).
Corresponding values y of solutions (x, y) are in A160098.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+418*sqrt(2))/601 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (361299+5950*sqrt(2))/601^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 1202 for n > 6; a(1)=0, a(2)=539, a(3)=560, a(4)=1803, a(5)=4740, a(6)=4859.
G.f.: x*(539 +21*x +1243*x^2 -297*x^3 -7*x^4 -297*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 601*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 539, 560, 1803, 4740, 4859, 12020}, 50] (* G. C. Greubel, Apr 22 2018 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201), print1(n, ", ")))}
(PARI) x='x+O('x^30); concat([0], Vec(x*(539 +21*x +1243*x^2 -297*x^3 -7*x^4 -297*x^5)/((1-x)*(1 -6*x^3 +x^6)))) \\ G. C. Greubel, Apr 22 2018
(Magma) I:=[0, 539, 560, 1803, 4740, 4859, 12020]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) -Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 22 2018
CROSSREFS
Cf. A160098, A001652, A101152, A156035 (decimal expansion of 3+2*sqrt(2)), A160099 (decimal expansion of (843+418*sqrt(2))/601), A160100 (decimal expansion of (361299+5950*sqrt(2))/601^2).
Sequence in context: A224742 A231194 A367525 * A239347 A118630 A184546
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 03 2007
EXTENSIONS
Edited and one term added by Klaus Brockhaus, May 18 2009
STATUS
approved