login
A367525
The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is not fixed under any of the symmetries of the square.
7
1, 538, 16777216, 35184378381312, 4722366482869645213696, 40564819207303347603293977182208, 22300745198530623141535718272648361505980416, 784637716923335095479473677930668862955643627524327473152, 1766847064778384329583297500742918515827483896875618958121606201292619776
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-6, A-8.
FORMULA
a(2m-1) = 4096^(m^2 - m).
a(2m) = 8^(m^2 - 1)*(512^m^2 + 3*8^m^2 + 2).
MATHEMATICA
Table[{4096^(m^2 - m), 8^(m^2 - 1) (512^m^2 + 3*8^m^2 + 2)}, {m, 1, 5}] // Flatten
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 10 2023
STATUS
approved